Time course analysis of baroreflex sensitivity during postural stress.

نویسندگان

  • Berend E Westerhof
  • Janneke Gisolf
  • John M Karemaker
  • Karel H Wesseling
  • Niels H Secher
  • Johannes J van Lieshout
چکیده

Postural stress requires immediate autonomic nervous action to maintain blood pressure. We determined time-domain cardiac baroreflex sensitivity (BRS) and time delay (tau) between systolic blood pressure and interbeat interval variations during stepwise changes in the angle of vertical body axis (alpha). The assumption was that with increasing postural stress, BRS becomes attenuated, accompanied by a shift in tau toward higher values. In 10 healthy young volunteers, alpha included 20 degrees head-down tilt (-20 degrees), supine (0 degree), 30 and 70 degrees head-up tilt (30 degrees, 70 degrees), and free standing (90 degrees). Noninvasive blood pressures were analyzed over 6-min periods before and after each change in alpha. The BRS was determined by frequency-domain analysis and with xBRS, a cross-correlation time-domain method. On average, between 28 (-20 degrees) to 45 (90 degrees) xBRS estimates per minute became available. Following a change in alpha, xBRS reached a different mean level in the first minute in 78% of the cases and in 93% after 6 min. With increasing alpha, BRS decreased: BRS = -10.1.sin(alpha) + 18.7 (r(2) = 0.99) with tight correlation between xBRS and cross-spectral gain (r(2) approximately 0.97). Delay tau shifted toward higher values. In conclusion, in healthy subjects the sensitivity of the cardiac baroreflex obtained from time domain decreases linearly with sin(alpha), and the start of baroreflex adaptation to a physiological perturbation like postural stress occurs rapidly. The decreases of BRS and reduction of short tau may be the result of reduced vagal activity with increasing alpha.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arterial baroreflex control of heart rate during exercise in postural tachycardia syndrome.

Patients with postural tachycardia syndrome (POTS) have excessive tachycardia without hypotension during orthostasis as well as exercise. We tested the hypothesis that excessive tachycardia during exercise in POTS is not related to abnormal baroreflex control of heart rate (HR). Patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine an...

متن کامل

Change in spontaneous baroreflex control of pulse interval during heat stress in humans.

Spontaneous baroreflex control of pulse interval (PI) was assessed in healthy volunteers under thermoneutral and heat stress conditions. Subjects rested in the supine position with their lower legs in a water bath at 34 degrees C. Heat stress was imposed by increasing the bath temperature to 44 degrees C. Arterial blood pressure (Finapres), PI (ECG), esophageal and skin temperature, and stroke ...

متن کامل

Contribution of vascular and neural segments to baroreflex sensitivity in response to postural stress.

BACKGROUND/AIMS The baroreflex pathway has a vascular and a neural segment, both being modulated by variations in peripheral blood pressure (BP). Besides overall baroreceptor sensitivity (BRS), defined as the spectral relationship between changes in peripheral BP and R-R interval within the frequency band of 0.05-0.15 Hz, vascular and neural segment contributions to the overall BRS can be disti...

متن کامل

Stimulation of the vestibular system by head movement or changes in gravitational forces is known to induce sympathoexcitation

A postural change from a recumbent to an upright position induces an increase in the hydrostatic pressure gradient, a footward fluid shift, reduced venous return and cardiac output, and reduced arterial pressure (AP). This reduction in AP is sensed by baroreceptors in the blood vessels, and AP is thought to be stabilized by the arterial baroreflex, an important negative feedback process. Altern...

متن کامل

Arterial Pressure, Heart Rate, and Cerebral Hemodynamics Across the Adult Life Span.

Age-related alterations in systemic and cerebral hemodynamics are not well understood. The purpose of this study is to characterize age-related alterations in beat-to-beat oscillations in arterial blood pressure (BP), heart rate (HR), cerebral blood flow (CBF), cardiac baroreflex sensitivity, and dynamic cerebral autoregulation across the adult life span. We studied 136 healthy adults aged 21 t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 291 6  شماره 

صفحات  -

تاریخ انتشار 2006